45 research outputs found

    Unveiling the Impact of Morphine on Tamoxifen Metabolism in Mice in vivo

    Get PDF
    Background- Tamoxifen is used to treat breast cancer and cancer recurrences. After administration, tamoxifen is converted into two more potent antitumor compounds, 4OH-tamoxifen and endoxifen by the CYP3A4/5 and 2D6 enzymes in human. These active compounds are inactivated by the same UDP-glucuronosyltransferases isoforms as those involved in the metabolism of morphine. Importantly, cancer-associated pain can be treated with morphine, and the common metabolic pathway of morphine and tamoxifen suggests potential clinically relevant interactions. Methods- Mouse liver microsomes were used to determine the impact of morphine on 4OH-tamoxifen metabolism in vitro. For in vivo experiments, female mice were first injected with tamoxifen alone and then with tamoxifen and morphine. Blood was collected, and LC-MS/MS was used to quantify tamoxifen, 4OH-tamoxifen, N-desmethyltamoxifen, endoxifen, 4OH-tamoxifen-glucuronide and endoxifen-glucuronide. Results- In vitro, we found increased Km values for the production of 4OH-tamoxifen-glucuronide in the presence of morphine, suggesting an inhibitory effect on 4OH-tamoxifen glucuronidation. Conversely, in vivo morphine treatment decreased 4OH-tamoxifen levels in the blood while dramatically increasing the formation of inactive metabolites 4OH-tamoxifen-glucuronide and endoxifen-glucuronide. Conclusions- Our findings emphasize the need for caution when extrapolating results from in vitro metabolic assays to in vivo drug metabolism interactions. Importantly, morphine strongly impacts tamoxifen metabolism in mice. It suggests that tamoxifen efficiency could be reduced when both drugs are co-administered in a clinical setting, e.g. to relieve pain in breast cancer patients. Further studies are needed to assess the potential for tamoxifen-morphine metabolic interactions in humans

    Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1Ξ² and Tumor Necrosis Factor Ξ±

    Get PDF
    Interleukin-1Ξ² and Tumor Necrosis Factor Ξ± play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPΞ² and NF-ΞΊB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators. Β© 2013 Adamik et al

    The Shortest Isoform of Dystrophin (Dp40) Interacts with a Group of Presynaptic Proteins to Form a Presumptive Novel Complex in the Mouse Brain

    Get PDF
    Duchenne muscular dystrophy (DMD) causes cognitive impairment in one third of the patients, although the underlying mechanisms remain to be elucidated. Recent studies showed that mutations in the distal part of the dystrophin gene correlate well with the cognitive impairment in DMD patients, which is attributed to Dp71. The study on the expression of the shortest isoform, Dp40, has not been possible due to the lack of an isoform specific antibody. Dp40 has the same promoter as that found in Dp71 and lacks the normal C-terminal end of Dp427. In the present study, we have raised polyclonal antibody against the N-terminal sequence common to short isoforms of dystrophin, including Dp40, and investigated the expression pattern of Dp40 in the mouse brain. Affinity chromatography with this antibody and the consecutive LC-MS/MS analysis on the interacting proteins revealed that Dp40 was abundantly expressed in synaptic vesicles and interacted with a group of presynaptic proteins, including syntaxin1A and SNAP25, which are involved in exocytosis of synaptic vesicles in neurons. We thus suggest that Dp40 may form a novel protein complex and play a crucial role in presynaptic function. Further studies on these aspects of Dp40 function might provide more insight into the molecular mechanisms of cognitive impairment found in patients with DMD

    New Mutations in Chronic Lymphocytic Leukemia Identified by Target Enrichment and Deep Sequencing

    Get PDF
    Chronic lymphocytic leukemia (CLL) is a heterogeneous disease without a well-defined genetic alteration responsible for the onset of the disease. Several lines of evidence coincide in identifying stimulatory and growth signals delivered by B-cell receptor (BCR), and co-receptors together with NFkB pathway, as being the driving force in B-cell survival in CLL. However, the molecular mechanism responsible for this activation has not been identified. Based on the hypothesis that BCR activation may depend on somatic mutations of the BCR and related pathways we have performed a complete mutational screening of 301 selected genes associated with BCR signaling and related pathways using massive parallel sequencing technology in 10 CLL cases. Four mutated genes in coding regions (KRAS, SMARCA2, NFKBIE and PRKD3) have been confirmed by capillary sequencing. In conclusion, this study identifies new genes mutated in CLL, all of them in cases with progressive disease, and demonstrates that next-generation sequencing technologies applied to selected genes or pathways of interest are powerful tools for identifying novel mutational changes

    SS18 Together with Animal-Specific Factors Defines Human BAF-Type SWI/SNF Complexes

    Get PDF
    Contains fulltext : 94049.pdf (publisher's version ) (Open Access

    Effect of sago waste, manure and straw biochar on peanut (Arachis hypogaea L.) growth and yield on an Ultisol of Southeast Sulawesi

    No full text
    Farmland in Southeast Sulawesi is largely dominated by Red and Yellow Podzolic soil type or Ultisol up to 60.30% of total soil. Aspects that caused low productivity, deteriorating soil physically and chemical properties in Ultisol soil is low soil organic matter content. Average peanut production in Southeast Sulawesi 2014 reached 0.46 t, on the other hand average domestic production is 1.87 t. The decrease in production is caused by decline in land productivity. Low peanut production is caused by soil fertility. Declining soil fertility can be restored by applying organic matter into the soil, but, in a tropical environment, the rate of organic matter decomposition and mineralization take place very quickly, resulting in additional organic material each planting season. Another alternative is to reduce the organic matter decomposition rate and release carbon in the soil through utilizing agricultural and animal waste into biochar which is resistant to corrosion. The experiment was conducted using a randomized block design which consisted of nine treatments and three replications. The results exhibited that straw biochar at 25%, or 2.48Β  t/ha + manure biochar at 75% equivalent to 5.87 t/ha was capable of increasing growth and yield rate for peanut varieties Talam 1 . Peanut varieties Talam 1 yield increased after sago waste , manure and straw application, by 45.62% compared to peanut crops yield without utilizing biochar on Ultisol

    Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation

    Get PDF
    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition

    Dysspondyloenchondromatosis: Another COL2A1-Related Skeletal Dysplasia?

    No full text
    Dysspondyloenchondromatosis (DSC) is a rare skeletal dysplasia that has currently been classified into the group of spondylometaphyseal dysplasias. To date, only 12 affected individuals have been reported. All cases are sporadic, and the etiology remains unknown. Distinctive features of DSC are anisospondyly and enchondroma-like lesions in the metaphyseal and diaphyseal portions of the long tubular bones. Affected individuals usually develop kyphoscoliosis and asymmetric limb shortening at an early age. Interestingly, some of the skeletal changes overlap with spondyloepimetaphyseal dysplasia (SEMD) Strudwick type, a rare type II collagen disorder. Based on this resemblance we postulated that DSC may be allelic to SEMD Strudwick type and therefore performed a COL2A1 analysis in an affected boy who was diagnosed as having DSC at the age of 3 years. The identification of a novel heterozygous COL2A1 missense mutation (p.Gly753Asp) in the proband confirms our hypothesis and suggests that DSC may be another type II collagen disorder
    corecore